Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

E. Goreshnik, M. Leblanc and V. Maisonneuve*

Laboratoire des Fluorures–UMR 6010 CNRS, Faculté des Sciences, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

Correspondence e-mail: vincent.maisonneuve@univ-lemans.fr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.063 wR factor = 0.151 Data-to-parameter ratio = 20.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $(C_{10}H_{28}N_4)[AlF_5(H_2O)]_2 \cdot 2H_2O$, obtained solvothermally at 473 K and isostructural with the iron analogue, consists of isolated $[AlF_5(H_2O)]$ octahedral anions and centrosymmetric tetraprotonated 1,4,8,11-tetraazacyclodecane (cyclamH_4^+) moieties connected by a network of N- $H \cdot \cdot \cdot X$ (X = O,F) hydrogen bonds. One water molecule participates in the aluminium coordination, whereas the second water molecule connects two neighbouring $[AlF_5(H_2O)]$ octahedra *via* $F1 \cdot \cdot \cdot H2WB - O2 - H2WA \cdot \cdot \cdot F3$ bridges.

tetraium bis(aquapentafluoroaluminate)

Comment

dihydrate

In our search for new hybrid fluorides with a high dimensionality of the inorganic component, we have applied solvothermal synthesis, under subcritical conditions (T < 473 K and P < 20 bars), in mixing an oxide, an HF solution and an organic amine (Goreshnik, Maisonneuve et al., 2002; Goreshnik, Leblanc et al., 2002). 1,4,8,11-Tetraazacyclodecane (cyclam) was chosen as an example having four secondary amines and a cyclic shape. In ethanol, a new fluoroaluminate was synthesized, $(C_{10}H_{28}N_4)[AlF_5(H_2O)]_2 \cdot 2H_2O,$ (I). isostructural with (C10H28N4)[FeF5(H2O)]2·2H2O (Rother et al., 1997; Rother, 1998). It contains isolated $[AlF_5(H_2O)]^{2-1}$ octahedra and centrosymmetric tetraprotonated 1,4,8,11tetraazacyclodecane (cyclam H_4^{4+}) moieties connected by a network of N-H···X (X = O,F) hydrogen bonds (Fig. 1). One water molecule participates in the aluminium coordination, whereas the second water molecule connects two neighbouring $[AlF_5(H_2O)]$ octahedra via $F1 \cdots H2WB - O2 - O2$ H2WA···F3 bridges. This structure can also be described in terms of a negatively charged three-dimensional network formed by [AlF₅(H₂O)] octahedra linked through the isolated water molecule by hydrogen bonds (Table 2). The anionic inorganic component exhibits channels along the *a* and *b* axes (Fig. 2), in which the cyclam H_4^{4+} cations are found.

Experimental

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound was prepared from a starting mixture of aluminium oxide (Al₂O₃), HF solution (40%), 1,4,8,11-tetraazacyclodecane Received 3 October 2003

Online 23 October 2003

Accepted 17 October 2003

metal-organic papers

ORTEP-3 view (Farrugia, 1997) of the cyclamH₄⁴⁺ cation, the $[AlF_5(H_2O)]^{2-}$ anion and the free water molecule, together with the atom-labelling scheme. Displacement ellipsoids are shown at the 40% probability level. [Symmetry code: (i) 1 - x, -y, 1 - z.]

Figure 2

Projections of (I) along the a (top) and b axes (bottom), showing the channels in which cyclam H_4^{4+} cations are located; these cations are not shown.

(cyclam) and ethanol in the molar ratio 1:10:4:320 under solvothermal conditions (473 K, 96 h, autogenous pressure) in a Teflon-lined autoclave. The resulting product was washed in ethanol and dried in air. Suitable single crystals were isolated by optical microscopy.

Crystal data

 $(C_{10}H_{28}N_4)[AlF_5(H_2O)]_2 \cdot 2H_2O$ $M_r = 520.37$ Monoclinic, $P2_1/n$ a = 8.4930(8) Å b = 8.9320 (10) Åc = 13.434 (2) Å $\beta = 97.141 \ (8)^{\circ}$ V = 1011.2 (2) Å³ Z = 2

Data collection

Siemens AED-2 diffractometer $2\theta/\omega$ scans Absorption correction: none 2955 measured reflections 2955 independent reflections 1591 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 30.0^\circ$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.063$ wR(F²) = 0.151 S = 1.092955 reflections 148 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å).

Al-F4	1.713 (2)	N1-C3	1.497 (4)
Al-F5	1.741 (2)	N2-C5	1.407 (4)
Al-F2	1.762 (2)	N2-C4	1.491 (5)
Al-F3	1.781 (2)	C1-C4	1.506 (5)
Al-F1	1.804 (2)	C2-C3 ⁱ	1.454 (5)
Al-O1	1.933 (3)	C2-C5	1.503 (5)
N1-C1	1.478 (4)		

 $D_x = 1.709 \text{ Mg m}^{-3}$

Cell parameters from 32

Parallelepiped, colourless 0.08 \times 0.06 \times 0.04 mm

Mo $K\alpha$ radiation

reflections

 $\mu = 0.26 \text{ mm}^{-1}$

T = 293 (2) K

 $h=-11\rightarrow 11$

3 standard reflections

frequency: 120 min

intensity decay: 15%

 $w = 1/[\sigma^2(F_o^2) + (0.0473P)^2$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.517P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.47 \, \mathrm{e} \, \mathrm{\AA}^{-3}$

 $k = 0 \rightarrow 12$ $l = 0 \rightarrow 18$

 $\theta = 2.5 - 10^{\circ}$

Symmetry code: (i) 1 - x, -y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1WA···F4 ⁱⁱ	0.83 (2)	1.676 (18)	2.501 (3)	172 (4)
$O1 - H1WB \cdot \cdot \cdot O2^{iii}$	0.82(2)	1.84 (2)	2.626 (4)	161 (4)
$O2-H2WA\cdots F3^{iv}$	0.82 (4)	1.92 (4)	2.610 (4)	141 (5)
$O2-H2WB\cdots F1^{v}$	0.81(2)	1.92 (2)	2.718 (4)	166 (4)
$N1-H1A\cdots F5^{vi}$	0.90	1.89	2.787 (4)	173
$N1 - H1A \cdots F2^{vi}$	0.90	2.34	2.789 (4)	111
$N1 - H1B \cdots F2^{v}$	0.90	1.61	2.478 (3)	161
$N2-H2A\cdots F1^{vi}$	0.90	1.97	2.732 (4)	141
$N2-H2A\cdots F5^{vi}$	0.90	2.07	2.842 (4)	144
$N2 - H2B \cdots F3$	0.90	1.76	2.655 (4)	173
Symmetry codes: (ii)	1 _ r _ v _	.7: (iji) r v 7.	-1: (iv) $-r$	-v = 1 - z (v)

 $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z;$ (vi) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z.$

H atoms bonded to C and N were positioned geometrically and refined with a riding model, with N-H = 0.90 and C-H = 0.97 Å. In the water molecules, O-H distances were restrained to 0.82 Å. For all H atoms, U_{iso} was set to 1.2 times U_{eq} of the carrier atom.

Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

graphics: *DIAMOND* (Brandenburg, 2001), *ORTEP*III (Burnett & Johnson, 1996) and *ORTEP*-3 Farrugia, 1997); software used to prepare material for publication: *enCIFer* (CCDC, 2002).

References

- Brandenburg, K. (2001). *DIAMOND*. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEP*III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- CCDC (2002). *enCIFer*. Version 1.0. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Goreshnik, E., Leblanc, M., Gaudin, E., Taulelle, F. & Maisonneuve, V. (2002). Solid State Sci. 4, 1213–1219.
- Goreshnik, E., Maisonneuve, V. & Leblanc, M. (2002). Z. Anorg. Allg. Chem. 628, 162–166.
- Rother, G. (1998). PhD thesis, Humboldt University, Berlin, Germany.
- Rother, G., Worzala, H. & Bentrup, U. (1997). Z. Krist. New Cryst. Struct. 212, 395–396.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175–189. Oxford University Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). *STADI*4 (Version 1.07) and *X-RED* (Version 1.10). Stoe & Cie GmbH, Darmstadt, Germany.