Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

E. Goreshnik, M. Leblanc and V. Maisonneuve*

Laboratoire des Fluorures-UMR 6010 CNRS, Faculté des Sciences, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

Correspondence e-mail:
vincent.maisonneuve@univ-lemans.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.063$
$w R$ factor $=0.151$
Data-to-parameter ratio $=20.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,4,8,11-Tetraazacyclodecane-1,4,8,11tetraium bis(aquapentafluoroaluminate) dihydrate

The title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, obtained solvothermally at 473 K and isostructural with the iron analogue, consists of isolated $\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedral anions and centrosymmetric tetraprotonated 1,4,8,11-tetraazacyclodecane (cyclamH H_{4}^{4+}) moieties connected by a network of $\mathrm{N}-$ $\mathrm{H} \cdots X(X=\mathrm{O}, \mathrm{F})$ hydrogen bonds. One water molecule participates in the aluminium coordination, whereas the second water molecule connects two neighbouring $\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra via $\mathrm{F} 1 \cdots \mathrm{H} 2 W B-\mathrm{O} 2-\mathrm{H} 2 W A \cdots \mathrm{~F} 3$ bridges.

Comment

In our search for new hybrid fluorides with a high dimensionality of the inorganic component, we have applied solvothermal synthesis, under subcritical conditions ($T<473 \mathrm{~K}$ and $P<20$ bars), in mixing an oxide, an HF solution and an organic amine (Goreshnik, Maisonneuve et al., 2002; Goreshnik, Leblanc et al., 2002). 1,4,8,11-Tetraazacyclodecane (cyclam) was chosen as an example having four secondary amines and a cyclic shape. In ethanol, a new fluoroaluminate was synthesized, $\quad\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), isostructural with $\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left[\mathrm{FeF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Rother et al., 1997; Rother, 1998). It contains isolated $\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ octahedra and centrosymmetric tetraprotonated 1,4,8,11tetraazacyclodecane (cyclamH H_{4}^{4+}) moieties connected by a network of $\mathrm{N}-\mathrm{H} \cdots X(X=\mathrm{O}, \mathrm{F})$ hydrogen bonds (Fig. 1). One water molecule participates in the aluminium coordination, whereas the second water molecule connects two neighbouring $\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra via $\mathrm{F} 1 \cdots \mathrm{H} 2 W B-\mathrm{O} 2-$ $\mathrm{H} 2 W A \cdots \mathrm{~F} 3$ bridges. This structure can also be described in terms of a negatively charged three-dimensional network formed by $\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra linked through the isolated water molecule by hydrogen bonds (Table 2). The anionic inorganic component exhibits channels along the a and b axes (Fig. 2), in which the cyclamH H_{4}^{4+} cations are found.

(I)

Experimental

The title compound was prepared from a starting mixture of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, HF solution (40\%), 1,4,8,11-tetraazacyclodecane

Received 3 October 2003
Accepted 17 October 2003 Online 23 October 2003
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
ORTEP-3 view (Farrugia, 1997) of the cyclamH 4^{4+} cation, the $\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2-}$ anion and the free water molecule, together with the atom-labelling scheme. Displacement ellipsoids are shown at the 40% probability level. [Symmetry code: (i) $1-x,-y, 1-z$.]

Figure 2
Projections of (I) along the a (top) and b axes (bottom), showing the channels in which cyclamH 4^{4+} cations are located; these cations are not shown.
(cyclam) and ethanol in the molar ratio 1:10:4:320 under solvothermal conditions ($473 \mathrm{~K}, 96 \mathrm{~h}$, autogenous pressure) in a Teflon-lined autoclave. The resulting product was washed in ethanol and dried in air. Suitable single crystals were isolated by optical microscopy.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left[\mathrm{AlF}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=520.37$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=8.4930$ (8) А
$b=8.9320(10) \AA$
$c=13.434$ (2) \AA
$\beta=97.141$ (8$)^{\circ}$
$V=1011.2(2) \AA^{3}$
$Z=2$

Data collection

Siemens AED-2 diffractometer $2 \theta / \omega$ scans
Absorption correction: none
2955 measured reflections
2955 independent reflections
1591 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=30.0^{\circ}$
$D_{x}=1.709 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 32 reflections
$\theta=2.5-10^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, colourless $0.08 \times 0.06 \times 0.04 \mathrm{~mm}$
$h=-11 \rightarrow 11$
$\begin{array}{ll}h & =0 \rightarrow 12\end{array}$
$l=0 \rightarrow 18$
3 standard reflections frequency: 120 min intensity decay: 15%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.151$
$S=1.09$
2955 reflections
148 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0473 P)^{2}\right. \\
& \quad+0.517 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (A).

$\mathrm{Al}-\mathrm{F} 4$	$1.713(2)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.497(4)$
$\mathrm{Al}-\mathrm{F} 5$	$1.741(2)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.407(4)$
$\mathrm{Al}-\mathrm{F} 2$	$1.762(2)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.491(5)$
$\mathrm{Al}-\mathrm{F} 3$	$1.781(2)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.506(5)$
$\mathrm{Al}-\mathrm{F} 1$	$1.804(2)$	$\mathrm{C} 2-\mathrm{C} 3^{\mathrm{i}}$	$1.454(5)$
$\mathrm{Al}-\mathrm{O} 1$	$1.933(3)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.503(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.478(4)$		

Symmetry code: (i) $1-x,-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 W A \cdots \mathrm{~F} 4^{\mathrm{ii}}$	0.83 (2)	1.676 (18)	2.501 (3)	172 (4)
$\mathrm{O} 1-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\text {iii }}$	0.82 (2)	1.84 (2)	2.626 (4)	161 (4)
$\mathrm{O} 2-\mathrm{H} 2 W A \cdots \mathrm{~F} 3^{\text {iv }}$	0.82 (4)	1.92 (4)	2.610 (4)	141 (5)
$\mathrm{O} 2-\mathrm{H} 2 W B \cdots \mathrm{~F}^{\mathrm{v}}$	0.81 (2)	1.92 (2)	2.718 (4)	166 (4)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots 5^{\text {vi }}$	0.90	1.89	2.787 (4)	173
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~F}^{\text {vi }}$	0.90	2.34	2.789 (4)	111
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{~F}^{\text {v }}$	0.90	1.61	2.478 (3)	161
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~F}^{\text {vi }}$	0.90	1.97	2.732 (4)	141
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~F} 5^{\text {vi }}$	0.90	2.07	2.842 (4)	144
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~F} 3$	0.90	1.76	2.655 (4)	173

Symmetry codes: (ii) $1-x,-y,-z$; (iii) $x, y, z-1$; (iv) $-x,-y, 1-z$; (v) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

H atoms bonded to C and N were positioned geometrically and refined with a riding model, with $\mathrm{N}-\mathrm{H}=0.90$ and $\mathrm{C}-\mathrm{H}=0.97 \AA$. In the water molecules, $\mathrm{O}-\mathrm{H}$ distances were restrained to $0.82 \AA$. For all H atoms, $U_{\text {iso }}$ was set to 1.2 times $U_{\text {eq }}$ of the carrier atom.

Data collection: STADI4 (Stoe \& Cie, 1998); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1998); program(s) used to solve structure: $S H E L X S 86$ (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

metal-organic papers

graphics: DIAMOND (Brandenburg, 2001), ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 Farrugia, 1997); software used to prepare material for publication: enCIFer (CCDC, 2002).

References

Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
CCDC (2002). enCIFer. Version 1.0. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Goreshnik, E., Leblanc, M., Gaudin, E., Taulelle, F. \& Maisonneuve, V. (2002). Solid State Sci. 4, 1213-1219.
Goreshnik, E., Maisonneuve, V. \& Leblanc, M. (2002). Z. Anorg. Allg. Chem. 628, 162-166.
Rother, G. (1998). PhD thesis, Humboldt University, Berlin, Germany.
Rother, G., Worzala, H. \& Bentrup, U. (1997). Z. Krist. New Cryst. Struct. 212, 395-396.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (1998). STADI4 (Version 1.07) and X-RED (Version 1.10). Stoe \&Cie GmbH, Darmstadt, Germany.

